
Matlab 6: GUI Tutorial.
Prepared by Vikram A Bose-Mullick.

Overview

Making Graphical User Interfaces in Matlab is very simple. A good place
to begin learning about GUI development on the Matlab platform is to first
understand how Matlab manages graphical objects. This particular tutorial
focuses primarily on Matlab 6. This platform makes and excellent choice for
developing interactive interfaces as the previous versions of Matlab had a
noticeably clumsier and less mature feel when to came to developing GUI’s.

Developing GUI’s on Matlab 6 is a breeze and hopefully this tutorial will
be sufficient to get most anyone started. If you are running an older version of
Matlab, this tutorial will help you get started however it will not be able to guide
you all the way. I would recommend a migration to Matlab 6 as it as a more
stable and a more mature platform where many of the bugs, especially in mat
lab’s ability to handle graphical objects have been addressed.

The main difference between Matlab 6 and the previous versions is the
following. Matlab 6 uses java while the others used C++. I should mention that
knowledge of neither platform is necessary to use matlab6 properly.

How does Matlab manages graphical objects?

Matlab is very similar to most other platforms, which allow GUI
development. Any GUI in Matlab is in essence a collection of objects. Every
object in the GUI has a unique handle (name). For instance, let’s consider the
following GUI. It is made up of three distinct objects, which are the following.

As I mentioned every object in the GUI will have an unique handle (name). This
handle will allow developers to access the objects properties. For instance let’s
say we wanted to change the text on the button from ‘Push Button’ to ‘Press
ME’. All we have to do is obtain the object’s handle. Once we have the handle
we can then set the ‘text’ property of the object to ‘Press ME’. Details regarding
actually doing this will be discuss shortly, in this section of the tutorial I have
deliberately decided to avoid code and focus on the overall process. The other
properties of the object ‘PushButton’ include things like ‘Background Color,
Enable, Font, FontAngle, FontName, Position, String, Style, Tag, Value, etc. A
full listing of it’s properties are given below. The programmer can change any of
these properties at design time.

Quick Re-Cap:

• GUI’s are a collection of objects.
• Every object has a unique handle.
• Every object has properties.
• The user can alter these properties at design time.

Properties for the object known as ‘Pushbutton1’

The frame or (figure) which is labeled ‘Untitled’.
The second object is the edit box. And the third
object is the ‘Button’ which is labeled ‘Push
Button’. As I mentioned every object must have an
unique handle.

 Frame or (figure)

Edit Box

Push Button

How do I obtain the Handle of an Object ?

Every thing about the
object is listed here except
for one very important
property. This property is
known as the ‘Handle’.
The reason this property is
not on the list is because
the ‘Handle’ is assigned at
Runtime. The user does
not get to specify the
handle however the user
may obtain the handle in a
number of different ways
depending on the version
of Matlab being used.

 STRING PROPERTY

 TAG PROPERTY

There are a number of ways the user can obtain the handle of an object in Matlab.
In Matlab 6 it is almost too easy. In previous versions of Matlab it’s just a little
bit more work. First we see how Matlab 6 manages handles.

IN MATLAB 6

Matlab 6 has a function, which collects every handle in the GUI and places it in a
convenient data structure. This makes life very easy as the user does not have to
poll every object for it’s handle.

Example………

IN PREVIOUS VERSION OF MATLAB

To obtain a handle in the previous version the user must poll the object for it’s handle. To
poll the object the user must give every GUI object a unique ‘Tag’. For instance the
default tag for the ‘PushButton’ is ‘pustbutton1’. There for the following is what the user
would need to do in order to obtain the handle of the object.

>> pushbutton1_handle = findobj(‘Tag’,’pushbutton1’);

To obtain handle for the remaining objects in the GUI the user must poll every object
individually for it’s handle. If there are many objects on the GUI this process becomes
laborious and tiresome.

Once we have the ‘Handle’ how do we change properties ?

>> fig = openfig('test.fig'); %loads the figure.
>> handles = guihandles(fig) %Gets handles.

handles =

 figure1: 102.0034
 edit1: 3.0043
 pushbutton1: 103.0039

Matlab has two very important functions, which allow the user to alter an
object’s properties at their discretion. These functions are listed below.

GET Get object properties.
 GET(H,'PropertyName') returns the value of the specified
property for the graphics object with handle H.

SET Set object properties.
 SET(H,'PropertyName',PropertyValue) sets the value of the
 specified property for the graphics object with handle H.

For instance consider the GUI discussed above, if we wanted to copy whatever
was written on the button into the edit box we would need to do the following.

SUMMARY:

• Guihandle() -> This function obtains all the handles in the GUI.
• Get() -> Allows users to obtain an object for a single property at runtime.
• Set() -> Allows users to change an objects property at runtime.
EXERCISE 1: BUILDING A SIMPLE GUI IN MATLAB FROM SCRATCH.

First we need the handles.

>> fig = openfig('test.fig'); %loads the figure.
>> handles = guihandles(fig) %Gets handles.

Now we need to copy the ‘String Property’ of the
Push Button into the Edit Box.

First we obtain the String Property of the Button
by using the get function.

>> var = get(handles.pushbutton1,’string’);

The we put this data into the edit box by using the
set function.

>> set(handles.edit1, ‘string’, var);

From this point in the tutorial we will take the shortest route to developing a fully
functional GUI in Matlab. The previous section of the tutorial covered some of the
concepts Matlab uses to manage graphical objects. Starting from this section the tutorial
will become a lot more hands on.

Matlab is able to automatically generate a lot of code that is needed for GUI.
When working under time constraints this feature of Matlab comes in very handy. For
beginners, it’s ok to rely on the automatically generated code.

THE GUIDE TOOL.

Matlab has a program called ‘guide’ which allows users to setup their GUI. The
guide tool is very intuitive to use and can be accessed from the command line by simply
typing in the following.

>> guide

STEP 1: In this step we will setup our GUI.

Start up Matlab6 and type in the following.

>> guide

STEP 2: Set up the GUI in the following manner.

STEP 3: Right Click on the Push Button and a pop up menu should appear.
From that menu pick the ‘Inspect Properties’ option.

 Change from ‘Push Button’ to
 ‘Plot Function’.

STEP 4: Right click on the lowest ‘Static Text’ object and select ‘Inspect
properties’.

 Change property from ‘Static
 Text’ to ‘Sin(x)’.
 Change property from ‘text3’ to
 ‘sin_func’.

STEP 5: Right click on the other ‘Static Text’ object and select ‘Inspect
properties’.

 Change from ‘Static Text’ to
 ‘Cos(x)’.
 Change from ‘text1’ to
 ‘cos_func’.

STEP 6: Right click on the third ‘Static Text’ object and select ‘Inspect
properties’.

 Change from ‘Static Text’ to
 ‘Frequency’.

 Change from ‘text4’ to ‘freq’.

STEP 6: Right click on the third ‘Edit Text’ object and select ‘Inspect
properties’.

 Change from ‘8.0’ to ‘15’.

 Change from ‘Edit Text’ to ‘1’.

STEP 7: At this point your GUI should look like this.

If you have made a mistake in the GUI you can easily correct it at this point
without moving on. For instance, if you look closely in this GUI there is really no
way to select which of the two (sin(x) or cos(x) are to be plotted. We should have
used a different object in the first place.. perhaps a check box. We can easily
delete the wrong object and replace it with the one we want. Since this is our
first GUI we will keep it simple and get rid on one of the static text boxes.

Click on the Cos(x) box and hit the delete key and the cos(x) should disappear
from the GUI. Once that is done, save as ‘mygui’.

As soon as you save it Matlab should generate the skeleton source code for you
and the source code should automatically open in an editor.

Understanding the Skeletal Code

This line calls the ‘guihandles() function
 which polls the GUI objects from their
 handles and stores them in a data structure
 called handles.

These are stubs where objects such as buttons, edit boxes get their bodies.

Step 8: Activating the buttons.

Add the following code to the skeletal code.

STEP 9: Running the program.

To run the program, simply go to the Matlab main window and call your program.

>> mygui

